The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164364 a(n) = A164349(2^n). 3
 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the last symbol at each stage of the method for generating A164349 using string operations. The number of 1's in the string is given by A164363, and this number is given by the recurrence A164363(n+1) = 2 * A164363(n) - A164364(n). This leads to the formula A164363(n+1) = 2^n - 2^(n-1) * A164364(1) - 2^(n-2) * A164364(2) - ... - A164364(n); for example, A164363(5) = 16 - 8 A164364(1) - 4 A164364(2) - 2 A164364(3) - A164364(4). This means that since the total number of symbols in the n-th string is 2**n + 1, the proportion of 0's in the first k terms of A164349, as n tends to infinity, is given by the number whose binary expansion is exactly this sequence. This number is approximately 0.6450588.. LINKS Paul Tek, Table of n, a(n) for n = 0..10000 MAPLE A053645 := proc(n) local dgs ; dgs := convert(n, base, 2) ; add(op(i, dgs)*2^(i-1), i=1..nops(dgs)-1) ; end: A164349 := proc(n) option remember; if n <= 1 then n; else a := A053645(n-1) ; while a > 1 do a := A053645(a-1) ; od: a ; fi; end: A164364 := proc(n) A164349(2^n) ; end: seq(A164364(n), n=0..120) ; # R. J. Mathar, Aug 17 2009 MATHEMATICA t = Nest[ Most@ Flatten@ {#, #} &, {0, 1}, 25]; Table[ t[[2^n + 1]], {n, 0, 25}] (* Robert G. Wilson v, Aug 17 2009 *) CROSSREFS Cf. A164349, A164362, A164363. Sequence in context: A186518 A127829 A127831 * A198517 A105385 A190227 Adjacent sequences:  A164361 A164362 A164363 * A164365 A164366 A164367 KEYWORD nonn AUTHOR Jack W Grahl, Aug 14 2009 EXTENSIONS More terms from R. J. Mathar, Aug 17 2009 Incorrect comments removed by Jack W Grahl, Dec 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 16:16 EST 2020. Contains 332209 sequences. (Running on oeis4.)