login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198520
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x)^n / A(x^n) * x^n/n ).
1
1, 1, 1, 2, 4, 9, 22, 55, 141, 370, 986, 2662, 7264, 20006, 55534, 155219, 436456, 1233822, 3504482, 9996417, 28624038, 82248498, 237082689, 685375920, 1986604360, 5772399530, 16810591254, 49059068617, 143450142998, 420213814655, 1233034693847, 3623838769503
OFFSET
0,4
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 22*x^6 + 55*x^7 +...
where
log(A(x)) = x + A(x)^2/A(x^2)*x^2/2 + A(x)^3/A(x^3)*x^3/3 + A(x)^4/A(x^4)*x^4/4 +...
more explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 26*x^5/5 + 76*x^6/6 + 218*x^7/7 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (A+x*O(x^n))^m/subst(A, x, x^m+x*O(x^n))*x^m/m))); polcoeff(A, n)}
CROSSREFS
Cf. A198413.
Sequence in context: A343291 A290996 A373245 * A115324 A196307 A107092
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2011
STATUS
approved