login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107092
G.f. A(x) satisfies A(x)^3 = A(x^3) + 3*x.
7
1, 1, -1, 2, -4, 9, -22, 55, -142, 376, -1011, 2758, -7614, 21220, -59630, 168759, -480533, 1375676, -3957075, 11430582, -33144264, 96434321, -281447954, 823734157, -2417092933, 7109265120, -20955593252, 61893804180, -183148075432, 542885589115, -1611809502764, 4792612539375
OFFSET
0,4
COMMENTS
Self-convolution cube is A107093.
LINKS
Ira M. Gessel, The Amdeberhan-Konvalinka Conjecture and Symmetric Functions, Séminaire Lotharingien Comb. (2024). See p. 83 of 109.
EXAMPLE
A(x)^3 = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 +...
A(x^3) = 1 + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18+...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(subst(A, x, x^3)+3*x+x*O(x^n))^(1/3)); polcoeff(A, n, x)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 11 2005
STATUS
approved