

A274950


Trajectory of 0 under the morphism 0 > 0001101, 1 > 0011001.


1



0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


COMMENTS

In some bar codes, the 0's and 1's on the left represent digits according to the following code:
0 = 0001101,
1 = 0011001,
2 = 0010011,
...,
9 = 0001011.
This sequence could then be loosely described as its own bar code.
(This assumes the sequence has no "guard digits" at the start, is infinite, and only uses the "left half" coding.)


LINKS

David A. Corneth, Table of n, a(n) for n = 0..10002
Index entries for sequences that are fixed points of mappings


EXAMPLE

Start with 0 > 0001101, so we have 0001101. The second digit is 0, so we concatenate 0001101 which gives 00011010001101. The third digit is 0, so we concatenate 0001101 again which gives 000110100011010001101. The fourth digit is 1 so we concatenate 0011001 to get 0001101000110100011010011001, etc.  David A. Corneth, Aug 03 2017


MATHEMATICA

Nest[Flatten[# /. {0 > {0, 0, 0, 1, 1, 0, 1}, 1 > {0, 0, 1, 1, 0, 0, 1}}] &, 0, 3] (* Michael De Vlieger, Aug 03 2017 *)


PROG

(PARI) first(n) = {my(res = [0, 0, 0, 1, 1, 0, 1], i = 2, m = Map(Mat([0, [0, 0, 0, 1, 1, 0, 1]; 1, [0, 0, 1, 1, 0, 0, 1]]))); while(#res < n, res = concat(res, mapget(m, res[i])); i++); res} \\ David A. Corneth, Aug 03 2017


CROSSREFS

Cf. A191818.
Sequence in context: A011658 A135461 A327219 * A093383 A093384 A080584
Adjacent sequences: A274947 A274948 A274949 * A274951 A274952 A274953


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Aug 04 2016


STATUS

approved



