login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080584 A run of 3*2^n 0's followed by a run of 3*2^n 1's, for n=0, 1, 2, ... 5
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = (1 - (-1)^A079944(A002264(n)) )/2, A079944(A002264(n))=floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003

Also a(n) = A079944(A002264(n)) = floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003

MAPLE

f := (c, n)->seq(c, i = 1..3*2^n); [f(0, 0), f(1, 0), f(0, 1), f(1, 1), f(0, 2), f(1, 2), f(0, 3), f(1, 3)]; f;

MATHEMATICA

Flatten[Table[{PadRight[{}, 3*2^n, 0], PadRight[{}, 3*2^n, 1]}, {n, 0, 4}]] (* Harvey P. Dale, Jun 01 2012 *)

CROSSREFS

Equals A080586 - 1.

Sequence in context: A274950 A093383 A093384 * A316824 A118953 A023970

Adjacent sequences: A080581 A080582 A080583 * A080585 A080586 A080587

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 05:56 EST 2022. Contains 358407 sequences. (Running on oeis4.)