The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079944 A run of 2^n 0's followed by a run of 2^n 1's, for n=0, 1, 2, ... 118
 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS With offset 2, this is the second bit in the binary expansion of n. - Franklin T. Adams-Watters, Feb 13 2009 a(n) = A173920(n+2,2); in the sequence of nonnegative integers (cf. A001477) substitute all n by 2^floor(n/2) occurrences of (n mod 2). - Reinhard Zumkeller, Mar 04 2010 REFERENCES Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. See Example 1.34. LINKS R. Stephan, Some divide-and-conquer sequences ... R. Stephan, Table of generating functions FORMULA a(n) = floor(log[2](4*(n+2)/3)) - floor(log[2](n+2)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003 For n >= 2, a(n-2)=1+floor(log[2](n/3))-floor(log[2](n/2)) - Benoit Cloitre, Mar 03 2003 G.f.: 1/x^2/(1-x) * (1/x + sum(k>=0, x^(3*2^k)-x^2^(k+1))). - Ralf Stephan, Jun 04 2003 a(n) = A000035(A004526(A030101(n+2))). - Reinhard Zumkeller, Mar 04 2010 MATHEMATICA Table[IntegerDigits[n + 2, 2][[2]], {n, 0, 100}] (* Jean-François Alcover, Jul 26 2019 *) PROG (Haskell) a079944 n = a079944_list !! n a079944_list =  f [0, 1] where f (x:xs) = x : f (xs ++ [x, x]) -- Reinhard Zumkeller, Oct 14 2010, Mar 28 2011 (PARI) a(n)=binary(n+2)[2] \\ Charles R Greathouse IV, Nov 07 2016 CROSSREFS Cf. A086694, A079882, A079945, A173922, A173923. Sequence in context: A104894 A168393 A071986 * A059652 A108736 A079813 Adjacent sequences:  A079941 A079942 A079943 * A079945 A079946 A079947 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Feb 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 03:02 EDT 2021. Contains 343121 sequences. (Running on oeis4.)