login
A059652
a(n) = [[(k^2)*n]-(k*[k*n])], where k = sqrt(3/2) and [] is the floor function.
2
0, -1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0
OFFSET
0,1
COMMENTS
The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..45, with k=2^(1/3), are 0, -0.224746, 0.550508, 0.325762, 1.101016, -0.348476, 0.426778, 0.202032, 0.97729, ...
MAPLE
Digits := 89; floor_diffs_floored(sqrt(3/2), 120);
CROSSREFS
A059648 gives similar sequence for k=sqrt(2). Positions of ones: A059653, positions of minus ones: A059655.
Sequence in context: A168393 A071986 A079944 * A108736 A362240 A079813
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 03 2001
STATUS
approved