OFFSET
0,1
COMMENTS
The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..20, with k=sqrt(2), are 0, 0.585786, 1.171572, 0.343144, 0.928930, 0.100502, 0.68629, 1.27207, 0.44365, 1.02943, 0.20100, 0.78679, 1.37258, 0.54415, 1.12993, 0.30151, 0.88729, 0.05886, 0.64465, 1.23044, 0.40201
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
MAPLE
Digits := 89; floor_diffs_floored(sqrt(2), 120); floor_diffs_floored := proc(k, upto_n) local j; [seq(floor(floor((k^2)*j)-(k*(floor(k*j)))), j=0..upto_n)]; end;
MATHEMATICA
With[{k = Sqrt[2]}, Table[Floor[Floor[k^2*j] - k*Floor[k*j]], {j, 0, 104}]] (* Jean-François Alcover, Mar 06 2016 *)
PROG
(PARI) for(n=0, 100, print1(floor(floor(n*sqrt(2)^2) - sqrt(2)*floor(n*sqrt(2))), ", ")) \\ G. C. Greubel, Jan 27 2018
(Magma) [Floor(Floor(n*Sqrt(2)^2) - Sqrt(2)*Floor(n*Sqrt(2))): n in [0..100]]; // G. C. Greubel, Jan 27 2018
(Python)
from math import isqrt
def A059648(n): return (m:=n<<1)-1-isqrt(isqrt(n*m)**2<<1) if n else 0 # Chai Wah Wu, Aug 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 03 2001
STATUS
approved