login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059648
a(n) = [[(k^2)*n]-(k*[k*n])], where k = sqrt(2) and [] is the floor function.
6
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
0,1
COMMENTS
The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..20, with k=sqrt(2), are 0, 0.585786, 1.171572, 0.343144, 0.928930, 0.100502, 0.68629, 1.27207, 0.44365, 1.02943, 0.20100, 0.78679, 1.37258, 0.54415, 1.12993, 0.30151, 0.88729, 0.05886, 0.64465, 1.23044, 0.40201
LINKS
MAPLE
Digits := 89; floor_diffs_floored(sqrt(2), 120); floor_diffs_floored := proc(k, upto_n) local j; [seq(floor(floor((k^2)*j)-(k*(floor(k*j)))), j=0..upto_n)]; end;
MATHEMATICA
With[{k = Sqrt[2]}, Table[Floor[Floor[k^2*j] - k*Floor[k*j]], {j, 0, 104}]] (* Jean-François Alcover, Mar 06 2016 *)
PROG
(PARI) for(n=0, 100, print1(floor(floor(n*sqrt(2)^2) - sqrt(2)*floor(n*sqrt(2))), ", ")) \\ G. C. Greubel, Jan 27 2018
(Magma) [Floor(Floor(n*Sqrt(2)^2) - Sqrt(2)*Floor(n*Sqrt(2))): n in [0..100]]; // G. C. Greubel, Jan 27 2018
(Python)
from math import isqrt
def A059648(n): return (m:=n<<1)-1-isqrt(isqrt(n*m)**2<<1) if n else 0 # Chai Wah Wu, Aug 29 2022
CROSSREFS
Cf. A007069. Positions of ones: A059649.
Cf. A002193 (sqrt(2)).
Sequence in context: A188472 A286044 A129272 * A288707 A079261 A354028
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 03 2001
STATUS
approved