login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188472
a(n) = [6r]-[nr]-[6r-nr], where r=(1+sqrt(5))/2 and []=floor.
2
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0
OFFSET
1
COMMENTS
See A188294.
Essentially the same as A188017. - Michel Dekking, Oct 15 2016
FORMULA
a(n) = [6r]-[nr]-[6r-nr], where r=(1+sqrt(5))/2.
a(n) = 1-A188017(n) for n not equal to 6 (from [-x]=-[x]-1 for non-integer x). - Michel Dekking, Oct 15 2016
MATHEMATICA
r = (1 + 5^(1/2))/2 + .0000000000001;
f[n_] := Floor[6r] - Floor[n*r] - Floor[6r - n*r]
t = Flatten[Table[f[n], {n, 1, 200}]] (* A188472 *)
Flatten[Position[t, 0] ] (* complement of A188473 *)
Flatten[Position[t, 1] ] (* A188473 *)
f[n_]:=Module[{gr6=6*GoldenRatio, nr=n*GoldenRatio}, Floor[gr6] - Floor[nr] - Floor[gr6-nr]]; Array[f, 140] (* Harvey P. Dale, Nov 14 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 01 2011
STATUS
approved