login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059651
a(n) = [[(k^2)*n]-(k*[k*n])], where k = cube root of 2 and [] is the floor function.
2
0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 1, -1, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0
OFFSET
0,1
COMMENTS
The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..50, where k=2^(1/3), are 0, -0.259921, 0.480158, 0.220237, -0.299605, -0.559526, 0.180553, 0.92063, -0.59921, ...
MAPLE
Digits := 89; floor_diffs_floored(evalf(2^(1/3)), 120);
CROSSREFS
A059648 gives similar sequence for k=sqrt(2). Positions of +1's: A059657, positions of -1's A059659.
Sequence in context: A362240 A079813 A078580 * A286339 A244735 A245938
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 03 2001
STATUS
approved