login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = [[(k^2)*n]-(k*[k*n])], where k = sqrt(2) and [] is the floor function.
6

%I #25 Aug 30 2022 02:22:46

%S 0,0,1,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,

%T 0,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,

%U 0,0,1,0,1,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0

%N a(n) = [[(k^2)*n]-(k*[k*n])], where k = sqrt(2) and [] is the floor function.

%C The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..20, with k=sqrt(2), are 0, 0.585786, 1.171572, 0.343144, 0.928930, 0.100502, 0.68629, 1.27207, 0.44365, 1.02943, 0.20100, 0.78679, 1.37258, 0.54415, 1.12993, 0.30151, 0.88729, 0.05886, 0.64465, 1.23044, 0.40201

%H G. C. Greubel, <a href="/A059648/b059648.txt">Table of n, a(n) for n = 0..10000</a>

%p Digits := 89; floor_diffs_floored(sqrt(2),120); floor_diffs_floored := proc(k,upto_n) local j; [seq(floor(floor((k^2)*j)-(k*(floor(k*j)))),j=0..upto_n)]; end;

%t With[{k = Sqrt[2]}, Table[Floor[Floor[k^2*j] - k*Floor[k*j]], {j, 0, 104}]] (* _Jean-François Alcover_, Mar 06 2016 *)

%o (PARI) for(n=0, 100, print1(floor(floor(n*sqrt(2)^2) - sqrt(2)*floor(n*sqrt(2))), ", ")) \\ _G. C. Greubel_, Jan 27 2018

%o (Magma) [Floor(Floor(n*Sqrt(2)^2) - Sqrt(2)*Floor(n*Sqrt(2))): n in [0..100]]; // _G. C. Greubel_, Jan 27 2018

%o (Python)

%o from math import isqrt

%o def A059648(n): return (m:=n<<1)-1-isqrt(isqrt(n*m)**2<<1) if n else 0 # _Chai Wah Wu_, Aug 29 2022

%Y Cf. A007069. Positions of ones: A059649.

%Y Cf. A002193 (sqrt(2)).

%K nonn

%O 0,1

%A _Antti Karttunen_, Feb 03 2001