login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173920
Triangle read by rows: T(n,k) = convolution of n with k in binary representation, 0<=k<=n.
7
0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2
OFFSET
0,10
COMMENTS
T(n,k) = SUM(bn(i)*bk(L-i-1): 0<=i<L), where L=A070939(n), n=SUM(bn(i)*2^i:0<=i<L), and k=SUM(bk(i)*2^i:0<=i<L);
T(n,2*k+1) = T(n,2*k) + 1;
T(n,k) <= MIN{A000120(n),A000120(k)};
row sums give A173921; central terms give A159780;
T(n,0) = A000004(n);
T(n,1) = A000012(n) for n>0;
T(n,2) = A079944(n-2) for n>1;
T(n,3) = A079882(n-2) for n>2;
T(n,4) = A173922(n-4) for n>3;
T(n,8) = A173923(n-8) for n>7;
T(n,n) = A159780(n).
FORMULA
T(n,k) = c(A030101(n),k,0) with c(x,y,z) = if y=0 then z else c([x/2],[y/2],z+(x mod 2)*(y mod 2)).
EXAMPLE
T(13,10) = T('1101','1010') = 1*0 + 1*1 + 0*0 + 1*1 = 2;
T(13,11) = T('1101','1011') = 1*1 + 1*1 + 0*0 + 1*1 = 3;
T(13,12) = T('1101','1100') = 1*0 + 1*0 + 0*1 + 1*1 = 1;
T(13,13) = T('1101','1101') = 1*1 + 1*0 + 0*1 + 1*1 = 2.
Triangle begins:
0;
0, 1;
0, 1, 0;
0, 1, 1, 2;
0, 1, 0, 1, 0;
0, 1, 0, 1, 1, 2;
...
MATHEMATICA
T[n_, k_] := Module[{bn, bk, lg},
bn = IntegerDigits[n, 2];
bk = IntegerDigits[k, 2];
lg = Max[Length[bn], Length[bk]];
ListConvolve[PadLeft[bn, lg], PadLeft[bk, lg]]][[1]];
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)
CROSSREFS
Sequence in context: A324832 A035203 A357905 * A230001 A070100 A070095
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Mar 04 2010
STATUS
approved