login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = convolution of n with k in binary representation, 0<=k<=n.
7

%I #10 Sep 19 2021 12:10:34

%S 0,0,1,0,1,0,0,1,1,2,0,1,0,1,0,0,1,0,1,1,2,0,1,1,2,0,1,1,0,1,1,2,1,2,

%T 2,3,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,2,0,1,0,1,1,2,1,2,0,1,0,0,1,

%U 0,1,1,2,1,2,1,2,1,2,0,1,1,2,0,1,1,2,0,1,1,2,0,0,1,1,2,0,1,1,2,1,2,2,3,1,2

%N Triangle read by rows: T(n,k) = convolution of n with k in binary representation, 0<=k<=n.

%C T(n,k) = SUM(bn(i)*bk(L-i-1): 0<=i<L), where L=A070939(n), n=SUM(bn(i)*2^i:0<=i<L), and k=SUM(bk(i)*2^i:0<=i<L);

%C T(n,2*k+1) = T(n,2*k) + 1;

%C T(n,k) <= MIN{A000120(n),A000120(k)};

%C row sums give A173921; central terms give A159780;

%C T(n,0) = A000004(n);

%C T(n,1) = A000012(n) for n>0;

%C T(n,2) = A079944(n-2) for n>1;

%C T(n,3) = A079882(n-2) for n>2;

%C T(n,4) = A173922(n-4) for n>3;

%C T(n,8) = A173923(n-8) for n>7;

%C T(n,n) = A159780(n).

%H R. Zumkeller, <a href="/A173920/b173920.txt">Rows 0 to 320 of the triangle, flattened</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F T(n,k) = c(A030101(n),k,0) with c(x,y,z) = if y=0 then z else c([x/2],[y/2],z+(x mod 2)*(y mod 2)).

%e T(13,10) = T('1101','1010') = 1*0 + 1*1 + 0*0 + 1*1 = 2;

%e T(13,11) = T('1101','1011') = 1*1 + 1*1 + 0*0 + 1*1 = 3;

%e T(13,12) = T('1101','1100') = 1*0 + 1*0 + 0*1 + 1*1 = 1;

%e T(13,13) = T('1101','1101') = 1*1 + 1*0 + 0*1 + 1*1 = 2.

%e Triangle begins:

%e 0;

%e 0, 1;

%e 0, 1, 0;

%e 0, 1, 1, 2;

%e 0, 1, 0, 1, 0;

%e 0, 1, 0, 1, 1, 2;

%e ...

%t T[n_, k_] := Module[{bn, bk, lg},

%t bn = IntegerDigits[n, 2];

%t bk = IntegerDigits[k, 2];

%t lg = Max[Length[bn], Length[bk]];

%t ListConvolve[PadLeft[bn, lg], PadLeft[bk, lg]]][[1]];

%t Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 19 2021 *)

%K nonn,tabl

%O 0,10

%A _Reinhard Zumkeller_, Mar 04 2010