login
A070095
Number of acute integer triangles with perimeter n and prime side lengths.
5
0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 1, 3, 0, 2, 0, 2, 0, 2, 1, 3, 0, 3, 0, 2, 0, 2, 0, 3, 0, 2, 1, 2, 0, 2, 1, 3, 0, 1, 0, 3, 0, 3, 0, 2, 0, 3, 1, 4, 0, 3, 0, 3, 0, 1, 1, 3, 0, 3, 1, 4, 0
OFFSET
1,17
FORMULA
a(n) = A070088(n) - A070103(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))) * A010051(i) * A010051(k) * A010051(n-i-k). - Wesley Ivan Hurt, May 13 2019
EXAMPLE
For n=17 there are A005044(17)=8 integer triangles: [1,8,8], [2,7,8], [3,6,8], [3,7,7], [4,5,8], [4,6,7], [5,5,7] and [5,6,6]: the two consisting of primes ([3,7,7] and [5,5,7]) are also acute, therefore a(17)=2.
MATHEMATICA
Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 05 2002
STATUS
approved