login
A070093
Number of acute integer triangles with perimeter n.
21
0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 4, 3, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 9, 8, 10, 9, 10, 10, 11, 12, 12, 12, 14, 13, 16, 14, 17, 16, 17, 18, 18, 20, 20, 20, 22, 22, 24, 23, 25, 26, 26, 27, 28, 30, 30, 29, 32, 31, 35, 33, 36, 36, 38, 39, 40, 40
OFFSET
1,9
COMMENTS
An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is acute iff A070085(k) > 0.
LINKS
Eric Weisstein's World of Mathematics, Acute Triangle.
FORMULA
a(n) = A005044(n) - A070101(n) - A024155(n);
a(n) = A042154(n) + A070098(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1-sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019
EXAMPLE
For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; two of them are acute, as 2^2+3^2<16=4^2, therefore a(9)=2.
MATHEMATICA
Table[Sum[Sum[(1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 05 2002
STATUS
approved