The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079945 Partial sums of A079882. 6
 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 R. Stephan, Some divide-and-conquer sequences ... R. Stephan, Table of generating functions FORMULA See A080596 for an explicit formula. a(n) = (3*n+3-2^(A000523((n+2)/2))-(-1)^A079944(n)*(n+3-3*2^(A000523((n+2)/2))))/2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003 Also a(n) = n+2^A000523((n+2)/2)*(1-3*A079944(n))+A079944(n)*(n+3) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003 MAPLE A079882:= [seq(op([1\$(2^n), 2\$(2^n)]), n=0..6)]: ListTools:-PartialSums(A079882); # Robert Israel, Oct 26 2020 CROSSREFS Apart from initial terms, same as A080596. Sequence in context: A162610 A155935 A081606 * A283736 A039017 A275319 Adjacent sequences:  A079942 A079943 A079944 * A079946 A079947 A079948 KEYWORD nonn,look AUTHOR N. J. A. Sloane, Feb 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 11:31 EDT 2021. Contains 343135 sequences. (Running on oeis4.)