login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079945
Partial sums of A079882.
6
1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103
OFFSET
0,2
REFERENCES
Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
FORMULA
See A080596 for an explicit formula.
a(n) = (3*n+3-2^(A000523((n+2)/2))-(-1)^A079944(n)*(n+3-3*2^(A000523((n+2)/2))))/2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
Also a(n) = n+2^A000523((n+2)/2)*(1-3*A079944(n))+A079944(n)*(n+3) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
MAPLE
A079882:= [seq(op([1$(2^n), 2$(2^n)]), n=0..6)]:
ListTools:-PartialSums(A079882); # Robert Israel, Oct 26 2020
CROSSREFS
Apart from initial terms, same as A080596.
Sequence in context: A162610 A155935 A081606 * A283736 A039017 A275319
KEYWORD
nonn,look
AUTHOR
N. J. A. Sloane, Feb 21 2003
STATUS
approved