login
Partial sums of A079882.
6

%I #15 Oct 26 2020 15:17:23

%S 1,3,4,5,7,9,10,11,12,13,15,17,19,21,22,23,24,25,26,27,28,29,31,33,35,

%T 37,39,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,65,

%U 67,69,71,73,75,77,79,81,83,85,87,89,91,93,94,95,96,97,98,99,100,101,102,103

%N Partial sums of A079882.

%D Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585

%H Robert Israel, <a href="/A079945/b079945.txt">Table of n, a(n) for n = 0..10000</a>

%H R. Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H R. Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>

%F See A080596 for an explicit formula.

%F a(n) = (3*n+3-2^(A000523((n+2)/2))-(-1)^A079944(n)*(n+3-3*2^(A000523((n+2)/2))))/2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003

%F Also a(n) = n+2^A000523((n+2)/2)*(1-3*A079944(n))+A079944(n)*(n+3) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003

%p A079882:= [seq(op([1$(2^n),2$(2^n)]),n=0..6)]:

%p ListTools:-PartialSums(A079882); # _Robert Israel_, Oct 26 2020

%Y Apart from initial terms, same as A080596.

%K nonn,look

%O 0,2

%A _N. J. A. Sloane_, Feb 21 2003