|
|
A285133
|
|
0-limiting word of the morphism 0->10, 1-> 0001.
|
|
6
|
|
|
0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
COMMENTS
|
The morphism 0->10, 1->0001 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 000110 -> 1010100001000110 -> 00011000011000011010101000011010100001000110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 000110 -> 1010100001000110, as in A285136.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 0, 1}}] &, {0}, 12]; (* A285133 *)
Flatten[Position[s, 0]]; (* A285134 *)
Flatten[Position[s, 1]]; (* A285135 *)
|
|
CROSSREFS
|
Cf. A285134, A285135, A285136.
Sequence in context: A219098 A288710 A179827 * A011658 A135461 A327219
Adjacent sequences: A285130 A285131 A285132 * A285134 A285135 A285136
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Apr 20 2017
|
|
STATUS
|
approved
|
|
|
|