Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 01 2023 03:13:18
%S 0,1,2,0,-5,-7,0,12,15,0,-22,-26,0,35,40,0,-51,-57,0,70,77,0,-92,-100,
%T 0,117,126,0,-145,-155,0,176,187,0,-210,-222,0,247,260,0,-287,-301,0,
%U 330,345,0,-376,-392,0,425,442,0,-477,-495
%N Expansion of x*(1 - x)/(1 - x + x^2)^3.
%C Image of C(n+1,2) under the Riordan array (1, x*(1-x)).
%H G. C. Greubel, <a href="/A104555/b104555.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,-6,7,-6,3,-1).
%F a(n) = 3*a(n-1) - 6*a(n-2) + 7*a(n-3) - 6*a(n-4) + 3*a(n-5) - a(n-6).
%F a(n) = Sum_{k=0..n} binomial(k, n-k)(-1)^(n-k)*k(k+1)/2.
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*(n-k)(n-k+1)/2.
%F a(3*n) = 0, a(3*n-2) = n*(3*n - 1)/2, a(3*n-1) = n*(3*n + 1)/2. - _Ralf Stephan_, May 20 2007
%F a(n) = ((Sum_{k=1..n+1} k^5) mod (Sum_{k=1..n+1} k^3))/((n+1)*(n+2))*(-1)^floor((n mod 6)/4). - _Gary Detlefs_, Oct 31 2011
%p S:=(j,n)->sum(k^j,k=1..n):seq((S(5,n+1)mod S(3,n+1))/((n+1)*(n+2))*(-1)^floor((n mod 6)/4), n=1..40). # _Gary Detlefs_, Oct 31 2011
%t CoefficientList[Series[x*(1-x)/(1-x+x^2)^3, {x,0,60}], x] (* _Harvey P. Dale_, Apr 13 2011 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1-x)/(1-x+x^2)^3 )); // _G. C. Greubel_, Jan 01 2023
%o (Sage)
%o def A104555_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( x*(1-x)/(1-x+x^2)^3 ).list()
%o A104555_list(60) # _G. C. Greubel_, Jan 01 2023
%Y Cf. A076118, A095130.
%K easy,sign
%O 0,3
%A _Paul Barry_, Mar 14 2005