|
|
A222072
|
|
Decimal expansion of (1/384)*Pi^4.
|
|
13
|
|
|
2, 5, 3, 6, 6, 9, 5, 0, 7, 9, 0, 1, 0, 4, 8, 0, 1, 3, 6, 3, 6, 5, 6, 3, 3, 6, 6, 3, 7, 6, 8, 3, 6, 2, 2, 7, 2, 1, 2, 8, 3, 2, 2, 5, 4, 3, 5, 5, 9, 5, 1, 6, 1, 8, 9, 8, 8, 1, 9, 7, 5, 5, 0, 4, 9, 4, 7, 1, 5, 7, 6, 9, 4, 1, 8, 8, 2, 0, 8, 2, 3, 4, 1, 1, 7, 7, 5, 6, 9, 5, 9, 2, 3, 8, 3, 5, 9, 1, 8, 1, 0, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Conjectured to be density of densest packing of equal spheres in 8 dimensions (achieved for example by the D_8 lattice).
The above conjecture is true (cf. Viazovska, 2017). - Felix Fröhlich, Jan 08 2018
|
|
REFERENCES
|
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
|
|
LINKS
|
|
|
FORMULA
|
Equals Sum_{n>=1} Sum_{k>=n} 1/(2*n - 1)^2/(2*k + 1)^2. - Geoffrey Critzer, Nov 03 2013
|
|
EXAMPLE
|
.25366950790104801363656336637683622721283225435595161898819...
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
Related constants: A020769, A020789, A093766, A093825, A222066, A222067, A222068, A222069, A222070, A222071, A222073, A222074, A222075.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|