|
0, 8, 8, 3, 8, 8, 3, 4, 7, 6, 4, 8, 3, 1, 8, 4, 4, 0, 5, 5, 0, 1, 0, 5, 5, 4, 5, 2, 6, 3, 1, 0, 6, 1, 2, 9, 9, 1, 0, 6, 0, 4, 4, 9, 2, 2, 1, 1, 0, 5, 9, 2, 5, 4, 5, 7, 3, 5, 4, 2, 4, 8, 3, 6, 2, 4, 4, 2, 0, 7, 7, 9, 9, 0, 3, 8, 8, 1, 6, 8, 9, 9, 2, 8, 1, 4, 9, 2, 2, 0, 8, 9, 5, 4, 7, 7, 5, 9, 8, 2, 9, 5, 9, 3, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Conjectured to be center density of densest packing of equal spheres in five dimensions (achieved for example by the D_5 lattice).
|
|
REFERENCES
|
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
|
|
LINKS
|
Table of n, a(n) for n=0..104.
J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
G. Nebe and N. J. A. Sloane, Home page for D_5 lattice
N. J. A. Sloane, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (for n>3 the values are only conjectural).
|
|
FORMULA
|
Equals A020789/2. - R. J. Mathar, Jan 27 2021
|
|
EXAMPLE
|
.088388347648318440550105545263106129910604492211...
|
|
PROG
|
(PARI) 1/sqrt(128) \\ Charles R Greathouse IV, Oct 31 2014
|
|
CROSSREFS
|
Related constants: A020769, A020789, A093766, A093825, A222067, A222068, A222069, A222070, A222071, A222072, A222073, A222074, A222075.
Sequence in context: A254291 A219300 A200686 * A303617 A296428 A073447
Adjacent sequences: A222063 A222064 A222065 * A222067 A222068 A222069
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane, Feb 10 2013
|
|
STATUS
|
approved
|
|