login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 1/sqrt(128).
11

%I #26 Dec 30 2023 09:51:47

%S 0,8,8,3,8,8,3,4,7,6,4,8,3,1,8,4,4,0,5,5,0,1,0,5,5,4,5,2,6,3,1,0,6,1,

%T 2,9,9,1,0,6,0,4,4,9,2,2,1,1,0,5,9,2,5,4,5,7,3,5,4,2,4,8,3,6,2,4,4,2,

%U 0,7,7,9,9,0,3,8,8,1,6,8,9,9,2,8,1,4,9,2,2,0,8,9,5,4,7,7,5,9,8,2,9,5,9,3,8

%N Decimal expansion of 1/sqrt(128).

%C Conjectured to be center density of densest packing of equal spheres in five dimensions (achieved for example by the D_5 lattice).

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.

%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1007/BF02574051">What are all the best sphere packings in low dimensions?</a>, Discr. Comp. Geom., 13 (1995), 383-403.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D5.html">Home page for D_5 lattice</a>

%H N. J. A. Sloane and Andrey Zabolotskiy, <a href="/A093825/a093825_1.txt">Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural)</a>.

%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>

%F Equals A020789/2. - _R. J. Mathar_, Jan 27 2021

%e .088388347648318440550105545263106129910604492211...

%t Join[{0},RealDigits[1/Sqrt[128],10,120][[1]]] (* _Harvey P. Dale_, Sep 20 2023 *)

%o (PARI) 1/sqrt(128) \\ _Charles R Greathouse IV_, Oct 31 2014

%Y Related constants: A020769, A020789, A093766, A093825, A222067, A222068, A222069, A222070, A222071, A222072, A260646.

%K nonn,cons

%O 0,2

%A _N. J. A. Sloane_, Feb 10 2013