login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302926
Cumulants of a Fibonacci-geometric probability distribution.
6
0, 6, 22, 210, 2974, 56130, 1324222, 37489410, 1238235454, 46740118530, 1984855550782, 93653819396610, 4860878501987134, 275227990564092930, 16882335978752910142, 1115211301788480951810, 78930528072274523870014, 5958837996496319756259330
OFFSET
0,2
COMMENTS
If F(k) is the k-th Fibonacci number, where F(0)=0, F(1)=1, and F(n)=F(n-1)+F(n-2), then p(k)=F(k-1)/2^k is a normalized probability distribution on the positive integers.
For example, it is the probability that k coin tosses are required to get two heads in a row, or the probability that a random series of k bits has its first two consecutive 1's at the end.
The g.f. for this distribution is g(x) = x^2/(4-2x-x^2) = (1/4)x^2 + (1/8)x^3 + (1/8)x^4 + (3/32)x^5 + ....
The cumulants of this distribution, defined by the cumulant e.g.f. log(g(e^x)), appear to be integers and form this sequence.
The cumulants appear to be even for n >= 0. Dividing them by 2 gives sequence A302927.
The n-th moments about zero of this distribution, known as raw moments, are defined by a(n) = Sum_{k>=1} (k^n)p(k). They also appear to be integers and form sequence A302922.
For n >= 1, the raw moments also appear to be even. Dividing them by 2 gives sequence A302923.
The central moments (i.e., the moments about the mean) also appear to be integers. They form sequence A302924.
For n >= 1, the central moments also appear to be even. Dividing them by 2 gives sequence A302925.
Note: Another probability distribution on the positive integers that has integral moments and cumulants is the geometric distribution p(k)=1/2^k. The sequences related to these moments are A000629, A000670, A052841, and A091346.
Variant of A103437. - R. J. Mathar, Jun 09 2018
LINKS
Albert Gordon Smith, Table of n, a(n) for n = 0..300
Christopher Genovese, Double Heads
FORMULA
E.g.f.: log(g(e^x)) where g(x) = x^2/(4-2x-x^2) is the g.f. for the probability distribution.
EXAMPLE
a(0)=0 is the 0th cumulant of the distribution. The 0th cumulant is always zero.
a(1)=6 is the 1st cumulant, which is always the mean.
a(2)=22 is the 2nd cumulant, which is always the variance.
MATHEMATICA
Module[{max, r, g},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
r! CoefficientList[Normal[Series[Log[g[Exp[x]]], {x, 0, max}]], x]
]
CROSSREFS
Half-cumulants: A302927.
Raw moments: A302922.
Raw half-moments: A302923.
Central moments: A302924.
Central half-moments: A302925.
Sequence in context: A009366 A230964 A075811 * A121796 A379997 A051224
KEYWORD
nonn
AUTHOR
Albert Gordon Smith, Apr 15 2018
STATUS
approved