OFFSET
0,3
COMMENTS
The values are just the row sums of the irregular triangle A328773 and for n>=1 of the regular triangle A329541.
Colors C_1,...,C_n are assigned to n nodes in the way that a_i >= a_(i+1) >= 0 for 1<=i<n, where a_i denotes the number of nodes colored with C_i.
a(n) gives the number of digraphs (see A000273) without restrictions, where nodes of the same color are not differentiated.
PROG
(PARI) \\ here C(p) computes A328773 sequence value for given partition.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 10, print(vecsum(Row(n)))) }
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Peter Dolland, Nov 16 2019
STATUS
approved