login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329543
Number of colored digraphs on n nodes with 1 to n colors assigned in a fixed order according the node count.
0
1, 1, 7, 116, 8282, 2168384, 2395241200, 10025552678528, 170709896192664592, 11335779739243176963200, 3029239690552322424003098368
OFFSET
0,3
COMMENTS
The values are just the row sums of the irregular triangle A328773 and for n>=1 of the regular triangle A329541.
Colors C_1,...,C_n are assigned to n nodes in the way that a_i >= a_(i+1) >= 0 for 1<=i<n, where a_i denotes the number of nodes colored with C_i.
a(n) gives the number of digraphs (see A000273) without restrictions, where nodes of the same color are not differentiated.
FORMULA
a(n) = Sum_{i=1..A000041(n)} A328773(n,i).
a(n) = Sum_{i=1..n} A329541(n,i) for n>=1.
PROG
(PARI) \\ here C(p) computes A328773 sequence value for given partition.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 10, print(vecsum(Row(n)))) }
CROSSREFS
Cf. A000041, A000273 (digraphs with one color), A053763 (digraphs with n colors), A328773 (digraphs to a given color scheme), A329541.
Sequence in context: A376042 A251585 A320083 * A180203 A070067 A027502
KEYWORD
nonn,more
AUTHOR
Peter Dolland, Nov 16 2019
STATUS
approved