login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Sum_{k=1..n} k^n/n^k.
1

%I #9 May 31 2022 11:23:13

%S 1,3,20,225,3789,89341,2821552,115377921,5939637425,375840753541,

%T 28641787322796,2583828842108449,271949027324094925,

%U 32986652806128680205,4563200871898056653504,713455071424061222336513

%N Numerator of Sum_{k=1..n} k^n/n^k.

%C a(p-1) is divisible by prime p>2. a(p) is divisible by ((p+1)/2)^2 for prime p>2.

%C Denominator of Sum[k^n/n^k,{k,1,n}] is equal to n^(n-1) = A000169(n). - _Alexander Adamchuk_, Jun 27 2006

%F a(n) = numerator(Sum_{k=1..n} k^n/n^k).

%F a(n) = n^(n-1)*(Sum_{k=1..n} k^n/n^k). - _Alexander Adamchuk_, Jun 27 2006

%F a(2m) is divisible by 2m+1 for integer m>0. a(2m-1) is divisible by m^2 for integer m>0. - _Alexander Adamchuk_, Jun 27 2006

%t Table[Numerator[Sum[k^n/n^k,{k,1,n}]],{n,1,20}]

%t Table[Sum[k^n/n^k,{k,1,n}]*n^(n-1),{n,1,50}] (* _Alexander Adamchuk_, Jun 27 2006 *)

%o (PARI) a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ _Michel Marcus_, May 31 2022

%Y Cf. A023037, A031971.

%Y Cf. A000169.

%K frac,nonn

%O 1,2

%A _Alexander Adamchuk_, Jun 18 2006, Jun 25 2006