login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108527
Number of labeled mobiles (cycle rooted trees) with n generators.
3
1, 3, 20, 229, 3764, 80383, 2107412, 65436033, 2347211812, 95492023811, 4344109422388, 218499395486909, 12039757564700644, 721239945304498215, 46669064731537444820, 3243864647191662324601, 241046155271316751794596
OFFSET
1,2
COMMENTS
A generator is a leaf or a node with just one child.
FORMULA
E.g.f. satisfies: (2-x)*A(x) = x - 1 - log(1-A(x)).
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.20846306198165450115960050053484328028... and c = 0.3060161306524907981116283162103879... - Vaclav Kotesovec, Mar 28 2014
MATHEMATICA
nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!, {k, 0, nmax}]; Array[c, nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x], {x, 0, nmax}], x]]==0][[1]] (* Vaclav Kotesovec, Mar 28 2014 *)
PROG
(PARI) {a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 07 2005
STATUS
approved