login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108530
Number of rooted identity trees with n internal (non-leaf) nodes.
3
1, 1, 2, 4, 12, 34, 110, 364, 1248, 4356, 15520, 56022, 204726, 755472, 2812004, 10543718, 39791070, 151022006, 576090250, 2207493080, 8493196536, 32797115398, 127071214442, 493831241234, 1924504466246, 7519182311366, 29447430754182, 115577336981932
OFFSET
0,3
COMMENTS
Also for n>0, rooted trees with n nodes and 2-colored internal nodes. Black nodes correspond to nodes with a leaf child; white nodes correspond to those without one.
FORMULA
Shifts left and halves under WEIGH transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.1516890102085520777311008746639624... and c = 0.3329810927479684511418598248... - Vaclav Kotesovec, Feb 28 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, 1, 2*b(n-1, n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, May 20 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<2, 1, 2*b[n-1, n-1]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Jun 07 2005
STATUS
approved