login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377101
G.f. A(x) satisfies Sum_{n>=1} A(x^n - x^(n+1)) = x + x^2.
3
1, 1, 2, 4, 12, 34, 108, 350, 1170, 3980, 13776, 48286, 171124, 611994, 2206018, 8006120, 29229932, 107280390, 395593940, 1464883654, 5445038132, 20308989646, 75985676050, 285111556728, 1072594810368, 4044869862236, 15287690645590, 57899780087350, 219708252658174, 835205725190634, 3180292173415490
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x + x^2 = Sum_{n>=1} A(x^n - x^(n+1)).
(2) x + x^2 = Sum_{n>=1} a(n) * x^n * (1-x)^n/(1-x^n).
(3) 2*C(x) - x = Sum_{n>=1} a(n) * x^n / (1 - C(x)^n), where C(x) = (1 - sqrt(1 - 4*x))/2 is the g.f. of the Catalan numbers (A000108).
a(n) ~ c * 4^n / n^(3/2), where c = 0.118833975923191568803966281841353477423069092... - Vaclav Kotesovec, Oct 26 2024
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 34*x^6 + 108*x^7 + 350*x^8 + 1170*x^9 + 3980*x^10 + 13776*x^11 + 48286*x^12 + ...
where
x + x^2 = A(x-x^2) + A(x^2-x^3) + A(x^3-x^4) + A(x^4-x^5) + A(x^5-x^6) + ...
Also,
x + x^2 = a(1)*x*(1-x)/(1-x) + a(2)*x^2*(1-x)^2/(1-x^2) + a(3)*x^3*(1-x)^3/(1-x^3) + a(4)*x^4*(1-x)^4/(1-x^4) + ...
SPECIFIC VALUES.
3/4 = A(1/2^2) + A(1/2^3) + A(1/2^4) + A(1/2^5) + A(1/2^6) + ...
4/9 = A(2/3^2) + A(2/3^3) + A(2/3^4) + A(2/3^5) + A(2/3^6) + ...
5/16 = A(3/4^2) + A(3/4^3) + A(3/4^4) + A(3/4^5) + A(3/4^6) + ...
6/25 = A(4/5^2) + A(4/5^3) + A(4/5^4) + A(4/5^5) + A(4/5^6) + ...
A(1/4) = 0.473062766764119275268472519560475021275667904444...
A(1/8) = 0.146091379044021979613977663433821560496912264648...
A(1/16) = 0.066969542527164031183514558613941039045200497375...
A(1/32) = 0.032291805145106464173568313939786469311507979841...
A(1/64) = 0.015877020134614769119124819748319680169725457847...
A(2/9) = 0.326160170964714161035409956881397750042473490926...
A(2/27) = 0.080528476310177688777131134634156506543424965067...
A(2/81) = 0.025332733256938154890698653999517757423697866466...
PROG
(PARI) \\ using formula (1)
{a(n) = my(V=[0, 1]); for(i=1, n, V=concat(V, 0); A=Ser(V);
V[#V] = polcoef(x+x^2 - sum(m=1, #V, subst(A, x, x^m*(1 - x) +x*O(x^#V))), #V-1) ); polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) \\ using formula (2)
{a(n) = my(V=[0, 1]); for(i=1, n, V=concat(V, 0); A=Ser(V);
V[#V] = polcoef(x+x^2 - sum(m=1, #V-1, V[m+1]*x^m*(1-x)^m/(1-x^m +O(x^#V))), #V-1) ); polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 18 2024
STATUS
approved