login
A377104
E.g.f. A(x) satisfies [x^n] A(x)^A003057(n) = 0 for n >= 2, where A003057 is "n appears n-1 times."
1
1, 1, -1, 4, -26, 240, -2850, 41160, -703640, 13889400, -310575720, 7752286080, -213867376800, 6462828372000, -212276818353600, 7528584190327200, -286677285603508800, 11667274390189017600, -505448781205934966400, 23223347244920039817600, -1127925105189437053699200, 57737023232409594718444800
OFFSET
0,4
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! + 4*x^3/3! - 26*x^4/4! + 240*x^5/5! - 2850*x^6/6! + 41160*x^7/7! - 703640*x^8/8! + 13889400*x^9/9! - 310575720*x^10/10! + 7752286080*x^11/11! - 213867376800*x^12/12! + 6462828372000*x^13/13! - 212276818353600*x^14/14! + 7528584190327200*x^15/15! + ...
RELATED TABLE.
The table of coefficients of x^k/k! in A(x)^n begins
n\k 0 1 2 3 4 5 6 7 8 9 10
1: [1, 1, -1, 4, -26, 240, -2850, 41160, -703640, 13889400, -310575720, ...];
2: [1, 2, 0, 2, -14, 140, -1720, 25060, -434280, 8662080, -194885040, ...];
3: [1, 3, 3, 0, 0, 30, -480, 7560, -147000, 3136560, -73364760, ...];
4: [1, 4, 8, 4, 4, 0, 0, 0, -21560, 618240, -16205280, ...];
5: [1, 5, 15, 20, 10, 20, 50, -1400, 0, 0, 0, 0, -1684359600, ...];
6: [1, 6, 24, 54, 54, 60, 120, -1260, -11760, -31920, 2000880, -65585520, 0, 0, 0, 0, 0, 24502922005161600, ...];
...
in which there are (n-1) contiguous zeros in row n starting at k = (n-1)*(n-2)/2 + 2 for n >= 2.
Equivalently, [x^n] A(x)^A003057(n) = 0 for n >= 2, where
A003057 = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, ...] (offset 2).
PROG
(PARI) {A003057(n) = round( sqrt(2*(n-1)) ) + 1}
{a(n) = my(V=[1, 1, 0], A); for(i=0, n, V = concat(V, 0); A = Ser(V); m = #V-2;
V[#V-1] = -polcoef(A^A003057(m), m)/A003057(m) ); n!*polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A003057.
Sequence in context: A209923 A317339 A304338 * A115416 A302606 A052577
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 31 2024
STATUS
approved