login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377106
G.f. A(x) satisfies A(x)^3 = A( x^3 + 9*x*A(x)^3 ), with A(0)=0, A'(0)=1.
2
1, 3, 18, 127, 966, 7686, 63068, 529503, 4526262, 39262658, 344789172, 3059733222, 27400769364, 247345475628, 2248572742200, 20570124766951, 189238723449318, 1749776993081730, 16253403563598516, 151604206816149210, 1419457992097097340, 13336331712054463644, 125697697304515725840
OFFSET
1,2
COMMENTS
Compare to C(x)^3 = C( x^3 + 3*x*C(x)^3 ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
Conjecture: a(n) is odd iff n = 2^k for some k >= 0.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A( x^3 + 9*x*A(x)^3 ).
(2) A(x)^9 = A( x^9 + 27*x^7*A(x)^3 + 243*x^5*A(x)^6 + 738*x^3*A(x)^9 + 81*x*A(x)^12 ).
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 966*x^5 + 7686*x^6 + 63068*x^7 + 529503*x^8 + 4526262*x^9 + 39262658*x^10 + 344789172*x^11 + 3059733222*x^12 + ...
where A(x)^3 = A( x^3 + 9*x*A(x)^3 ).
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 732*x^6 + 6642*x^7 + 60507*x^8 + 553329*x^9 + 5079024*x^10 + 46788678*x^11 + 432520930*x^12 + ...
Series reversion of A(x) equals B(x) - 3*x^3/B(x) where
B(x) = x + 8*x^4 - 280*x^7 + 15328*x^10 - 1007576*x^13 + 73169608*x^16 - 5656895520*x^19 + 456585800584*x^22 - 38029012055320*x^25 + 3244225801946920*x^28 - 282033503420822552*x^31 + ...
so that A( B(x) - 3*x^3/B(x) ) = x.
SPECIFIC VALUES.
A(t) = 1/6 at t = 0.0913017665091460949496315519875858022728583060252844...
where 1/216 = A( t^3 + t/24 ).
A(t) = 1/9 at t = 0.0756231400530157002966336216229658355706050775929719...
where 1/729 = A( t^3 + t/81 ).
A(1/11) = 0.16461186433566159924255427988603576152486558542514...
A(1/12) = 0.13356888809515041673070959997705841146178687774042...
A(1/13) = 0.11450357672473104104332015691591377007745191359804...
A(1/15) = 0.09064971528132540512370615784788517775098854995359...
PROG
(PARI) {a(n) = my(A=x+3*x^2); for(m=1, n, A = truncate(A); A = subst(A, x, x^3 + 9*x*A^3 +x^4*O(x^m))^(1/3) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A271934.
Sequence in context: A369940 A376806 A264230 * A369264 A368079 A373313
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2024
STATUS
approved