login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377108
G.f.: Sum_{k>=1} x^(8*k-1) * Product_{j=1..k-1} (1-x^(7*k+j-1))/(1-x^j).
2
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 6, 6, 8, 9, 11, 12, 15, 16, 20, 22, 26, 29, 35, 37, 43, 47, 55, 60, 70, 77, 90, 100, 115, 128, 149, 165, 190, 212, 242, 269, 306, 339, 385, 427, 482, 536, 606, 672, 757
OFFSET
0,24
COMMENTS
In general, if m > 1 and g.f. = Sum_{k>=1} x^((m+1)*k-1) * Product_{j=1..k-1} (1-x^(m*k+j-1))/(1-x^j), then a(n) ~ m! * Pi^m * exp(Pi*sqrt(2*n/3)) / (2^((m+4)/2) * 3^((m+1)/2) * n^((m+2)/2)).
Equivalently, a(n) ~ m! * Pi^m * A000041(n) / (6^(m/2) * n^(m/2)).
LINKS
FORMULA
a(n) ~ 35 * Pi^7 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(9/2)).
MATHEMATICA
nmax=100; CoefficientList[Series[Sum[x^(8*k-1)*Product[(1-x^(7*k+j-1))/(1-x^j), {j, 1, k-1}], {k, 1, nmax/8+1}], {x, 0, nmax}], x]
nmax=100; p=x^6; s=x^6; Do[p=Normal[Series[p*x^8*(1-x^(8*k-1))*(1-x^(8*k))*(1-x^(8*k+1))*(1-x^(8*k+2))*(1-x^(8*k+3))*(1-x^(8*k+4))*(1-x^(8*k+5))*(1-x^(8*k+6))/((1-x^(7*k+6))*(1-x^(7*k+5))*(1-x^(7*k+4))*(1-x^(7*k+3))*(1-x^(7*k+2))*(1-x^(7*k+1))*(1-x^(7*k))*(1-x^k)), {x, 0, nmax}]]; s+=p; , {k, 1, nmax/8+1}]; Join[{0}, Take[CoefficientList[s, x], nmax]]
CROSSREFS
Column 7 of A350879.
Cf. A000041.
Sequence in context: A306921 A048686 A278959 * A090501 A361385 A126848
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 16 2024
STATUS
approved