OFFSET
0,24
COMMENTS
In general, if m > 1 and g.f. = Sum_{k>=1} x^((m+1)*k-1) * Product_{j=1..k-1} (1-x^(m*k+j-1))/(1-x^j), then a(n) ~ m! * Pi^m * exp(Pi*sqrt(2*n/3)) / (2^((m+4)/2) * 3^((m+1)/2) * n^((m+2)/2)).
Equivalently, a(n) ~ m! * Pi^m * A000041(n) / (6^(m/2) * n^(m/2)).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
a(n) ~ 35 * Pi^7 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(9/2)).
MATHEMATICA
nmax=100; CoefficientList[Series[Sum[x^(8*k-1)*Product[(1-x^(7*k+j-1))/(1-x^j), {j, 1, k-1}], {k, 1, nmax/8+1}], {x, 0, nmax}], x]
nmax=100; p=x^6; s=x^6; Do[p=Normal[Series[p*x^8*(1-x^(8*k-1))*(1-x^(8*k))*(1-x^(8*k+1))*(1-x^(8*k+2))*(1-x^(8*k+3))*(1-x^(8*k+4))*(1-x^(8*k+5))*(1-x^(8*k+6))/((1-x^(7*k+6))*(1-x^(7*k+5))*(1-x^(7*k+4))*(1-x^(7*k+3))*(1-x^(7*k+2))*(1-x^(7*k+1))*(1-x^(7*k))*(1-x^k)), {x, 0, nmax}]]; s+=p; , {k, 1, nmax/8+1}]; Join[{0}, Take[CoefficientList[s, x], nmax]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 16 2024
STATUS
approved