login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377100
G.f. A(x) satisfies A(x) = A(x^3)/A(x^2) + A(x)^2.
1
1, 1, 1, 4, 10, 28, 82, 256, 808, 2617, 8566, 28447, 95416, 323002, 1101724, 3783769, 13071556, 45396925, 158400937, 555035695, 1952238598, 6890367190, 24395779840, 86623201930, 308388736639, 1100569819672, 3936511575349, 14109420968044, 50669532081790, 182291946385519, 656930486625718, 2371133950246495
OFFSET
1,4
COMMENTS
Conjecture: a(n) == 1 (mod 3) for n >= 1, which has been verified for the initial 2305 terms.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = A(x^3)/A(x^2) + A(x)^2.
(2) A(x) = 1 - A(x^3) / (A(x) * A(x^2)).
(3) A(x) = (1 - sqrt(1 - 4*A(x^3)/A(x^2)))/2.
a(n) ~ c * d^n / n^(3/2), where d = 3.7863653657737138633390523619934080121556430464612481222528... and c = 0.133726246724835700833882379294974176805097212863226248... - Vaclav Kotesovec, Nov 25 2024
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 28*x^6 + 82*x^7 + 256*x^8 + 808*x^9 + 2617*x^10 + 8566*x^11 + 28447*x^12 + ...
where A(x) = A(x^3)/A(x^2) + A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 29*x^6 + 84*x^7 + 256*x^8 + 812*x^9 + 2616*x^10 + 8578*x^11 + 28454*x^12 + ...
A(x^3)/A(x^2) = x - x^3 + x^4 - x^6 - 2*x^7 - 4*x^9 + x^10 - 12*x^11 - 7*x^12 - 20*x^13 - 12*x^14 - 106*x^15 - 11*x^16 - 282*x^17 - 133*x^18 - 863*x^19 - 318*x^20 - 3004*x^21 - 824*x^22 - 9642*x^23 - 3511*x^24 + ...
SPECIFIC VALUES.
A(t) = 2/5 at t = 0.2524344583306892446330618054730495682087506920909...
A(t) = 1/3 at t = 0.2320562211245459629892863344294626360139726683442...
A(t) = 1/4 at t = 0.1934098827751950108254656383626313546809677140215...
A(t) = 1/5 at t = 0.1636941944543552131282198725975208466904265162419...
A(1/4) = 0.38998631443325866799564283462093272794063010270972...
where A(1/4) = A(1/64)/A(1/16) + A(1/4)^2.
A(1/5) = 0.26231987380454237963569805198314775610358762307447...
where A(1/5) = A(1/125)/A(1/25) + A(1/5)^2.
A(1/6) = 0.20466907613859333014170015403398831627945711841689...
where A(1/6) = A(1/216)/A(1/36) + A(1/6)^2.
A(1/7) = 0.16886128781516765156942825490683640154708902665786...
A(1/8) = 0.14403120479636364458640343085117018181392306415283...
A(1/9) = 0.12568659456031966917982898016890665369785621094542...
A(1/16) = 0.06672301128588339314718493957102832603310943256142...
A(1/25) = 0.04167539404399936286416999003300893924018473834921...
A(1/36) = 0.02857337707390375424812158826059144303348530928252...
A(1/49) = 0.02083388767242775805806913860068416709771631936458...
A(1/64) = 0.01587320348112548054371664007880899788710197613384...
A(1/125) = 0.008064528719196404764792736015117367458367638921829...
A(1/216) = 0.004651164188289650656367523975284711447986222337517...
PROG
(PARI) \\ From formula: A(x) = A(x^3)/A(x^2) + A(x)^2 \\
{a(n) = my(A=[0, 1]); for(m=1, n, A=concat(A, 0);
A[#A] = polcoef( subst(Ser(A), x, x^3)/subst(Ser(A), x, x^2) - Ser(A) + Ser(A)^2, #A-1) ); H=A; A[n+1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A026123 A091468 A103457 * A083587 A228403 A061639
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Nov 24 2024
STATUS
approved