login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies A(x) = A(x^3)/A(x^2) + A(x)^2.
1

%I #13 Nov 25 2024 07:13:39

%S 1,1,1,4,10,28,82,256,808,2617,8566,28447,95416,323002,1101724,

%T 3783769,13071556,45396925,158400937,555035695,1952238598,6890367190,

%U 24395779840,86623201930,308388736639,1100569819672,3936511575349,14109420968044,50669532081790,182291946385519,656930486625718,2371133950246495

%N G.f. A(x) satisfies A(x) = A(x^3)/A(x^2) + A(x)^2.

%C Conjecture: a(n) == 1 (mod 3) for n >= 1, which has been verified for the initial 2305 terms.

%H Paul D. Hanna, <a href="/A377100/b377100.txt">Table of n, a(n) for n = 1..1200</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) A(x) = A(x^3)/A(x^2) + A(x)^2.

%F (2) A(x) = 1 - A(x^3) / (A(x) * A(x^2)).

%F (3) A(x) = (1 - sqrt(1 - 4*A(x^3)/A(x^2)))/2.

%F a(n) ~ c * d^n / n^(3/2), where d = 3.7863653657737138633390523619934080121556430464612481222528... and c = 0.133726246724835700833882379294974176805097212863226248... - _Vaclav Kotesovec_, Nov 25 2024

%e G.f.: A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 28*x^6 + 82*x^7 + 256*x^8 + 808*x^9 + 2617*x^10 + 8566*x^11 + 28447*x^12 + ...

%e where A(x) = A(x^3)/A(x^2) + A(x)^2.

%e RELATED SERIES.

%e A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 29*x^6 + 84*x^7 + 256*x^8 + 812*x^9 + 2616*x^10 + 8578*x^11 + 28454*x^12 + ...

%e A(x^3)/A(x^2) = x - x^3 + x^4 - x^6 - 2*x^7 - 4*x^9 + x^10 - 12*x^11 - 7*x^12 - 20*x^13 - 12*x^14 - 106*x^15 - 11*x^16 - 282*x^17 - 133*x^18 - 863*x^19 - 318*x^20 - 3004*x^21 - 824*x^22 - 9642*x^23 - 3511*x^24 + ...

%e SPECIFIC VALUES.

%e A(t) = 2/5 at t = 0.2524344583306892446330618054730495682087506920909...

%e A(t) = 1/3 at t = 0.2320562211245459629892863344294626360139726683442...

%e A(t) = 1/4 at t = 0.1934098827751950108254656383626313546809677140215...

%e A(t) = 1/5 at t = 0.1636941944543552131282198725975208466904265162419...

%e A(1/4) = 0.38998631443325866799564283462093272794063010270972...

%e where A(1/4) = A(1/64)/A(1/16) + A(1/4)^2.

%e A(1/5) = 0.26231987380454237963569805198314775610358762307447...

%e where A(1/5) = A(1/125)/A(1/25) + A(1/5)^2.

%e A(1/6) = 0.20466907613859333014170015403398831627945711841689...

%e where A(1/6) = A(1/216)/A(1/36) + A(1/6)^2.

%e A(1/7) = 0.16886128781516765156942825490683640154708902665786...

%e A(1/8) = 0.14403120479636364458640343085117018181392306415283...

%e A(1/9) = 0.12568659456031966917982898016890665369785621094542...

%e A(1/16) = 0.06672301128588339314718493957102832603310943256142...

%e A(1/25) = 0.04167539404399936286416999003300893924018473834921...

%e A(1/36) = 0.02857337707390375424812158826059144303348530928252...

%e A(1/49) = 0.02083388767242775805806913860068416709771631936458...

%e A(1/64) = 0.01587320348112548054371664007880899788710197613384...

%e A(1/125) = 0.008064528719196404764792736015117367458367638921829...

%e A(1/216) = 0.004651164188289650656367523975284711447986222337517...

%o (PARI) \\ From formula: A(x) = A(x^3)/A(x^2) + A(x)^2 \\

%o {a(n) = my(A=[0,1]); for(m=1,n, A=concat(A,0);

%o A[#A] = polcoef( subst(Ser(A),x,x^3)/subst(Ser(A),x,x^2) - Ser(A) + Ser(A)^2, #A-1) );H=A;A[n+1]}

%o for(n=1,40,print1(a(n),", "))

%K nonn,new

%O 1,4

%A _Paul D. Hanna_, Nov 24 2024