OFFSET
1,3
COMMENTS
In a semi-identity tree, only the non-leaf branches of any given vertex are required to be distinct. Alternatively, a rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
Samuele Giraudo, Mockingbird lattices, Séminaire Lotharingien de Combinatoire XX, Proceedings of the 34th Conf. on Formal Power, Series and Algebraic Combinatorics (Bangalore, India, 2022).
FORMULA
G.f.: x*A(x) where A(x) satisfies A(x) = 1 + x + x*(A(x)^2 - A(x^2)). - Andrew Howroyd, May 07 2021
EXAMPLE
The a(1) = 1 through a(5) = 12 trees:
o (oo) ((oo)o) (((oo)o)o) ((((oo)o)o)o)
(o(oo)) ((o(oo))o) (((o(oo))o)o)
(o((oo)o)) (((oo)o)(oo))
(o(o(oo))) ((o((oo)o))o)
((o(o(oo)))o)
((o(oo))(oo))
((oo)((oo)o))
((oo)(o(oo)))
(o(((oo)o)o))
(o((o(oo))o))
(o(o((oo)o)))
(o(o(o(oo))))
MATHEMATICA
crsiq[n_]:=Join@@Table[Select[Union[Tuples[crsiq/@ptn]], #=={}||#=={{}, {}}||Length[#]==2&&(UnsameQ@@DeleteCases[#, {}])&], {ptn, Join@@Permutations/@IntegerPartitions[n-1]}];
Table[Length[crsiq[n]], {n, 1, 11, 2}]
(* Second program: *)
m = 29; p[_] = 1;
Do[p[x_] = 1 + x + x (p[x]^2 - p[x^2]) + O[x]^m // Normal, {m}];
CoefficientList[p[x], x] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
PROG
(PARI) seq(n)={my(p=O(1)); for(n=1, n, p=1 + x + x*(p^2-subst(p, x, x^2))); Vec(p)} \\ Andrew Howroyd, May 07 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 05 2021
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, May 07 2021
STATUS
approved