The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343665 Number of partitions of an n-set without blocks of size 5. 7
1, 1, 2, 5, 15, 51, 197, 835, 3860, 19257, 102997, 586170, 3535645, 22496437, 150454918, 1054235150, 7718958995, 58905868192, 467530598983, 3851775136517, 32881385742460, 290387471713872, 2649226725182823, 24934118754400767, 241809265181914545, 2413608066257526577 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(exp(x) - 1 - x^5/5!).
a(n) = n! * Sum_{k=0..floor(n/5)} (-1)^k * Bell(n-5*k) / ((n-5*k)! * k! * (5!)^k).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=5, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
MATHEMATICA
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^5/5!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 5 k]/((n - 5 k)! k! (5!)^k), {k, 0, Floor[n/5]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 5, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
CROSSREFS
Sequence in context: A117426 A201168 A001681 * A192553 A053553 A276721
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 25 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 01:37 EDT 2024. Contains 372807 sequences. (Running on oeis4.)