login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124504
Number of partitions of an n-set without blocks of size 3.
14
1, 1, 2, 4, 11, 32, 113, 422, 1788, 8015, 39435, 204910, 1144377, 6722107, 41877722, 273328660, 1875326627, 13427171644, 100415636519, 780856389454, 6312398830812, 52891894374481, 459022366424253, 4117482357137214, 38140612800271305, 364280428671552453, 3584042687233836274
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(exp(x)-1-x^3/6).
a(n) = A124503(n,0).
EXAMPLE
a(3)=4 because if the set is {1,2,3}, then we have 1|2|3, 1|23, 12|3 and 13|2.
MAPLE
G:=exp(exp(x)-1-x^3/6): Gser:=series(G, x=0, 30): seq(n!*coeff(Gser, x, n), n=0..26);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=3, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015, revised, Jun 24 2022
MATHEMATICA
a[n_] := SeriesCoefficient[Exp[Exp[x]-1-x^3/6], {x, 0, n}]*n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 13 2015 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace( exp(exp(x)-1-x^3/6) ) ) \\ Joerg Arndt, Jan 19 2015
CROSSREFS
Sequence in context: A148171 A318644 A113774 * A056324 A056325 A345207
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 14 2006
STATUS
approved