login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328153
Number of set partitions of [n] such that at least one of the block sizes is 3.
4
0, 0, 0, 1, 4, 20, 90, 455, 2352, 13132, 76540, 473660, 3069220, 20922330, 149021600, 1109629885, 8604815520, 69437698160, 581661169640, 5051885815603, 45411759404560, 421977921782270, 4047693372023070, 40034523497947132, 407818256494533984, 4274309903558446900
OFFSET
0,5
LINKS
FORMULA
E.g.f.: exp(exp(x)-1) - exp(exp(x)-1-x^3/6).
a(n) = A000110(n) - A124504(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0)-b(n, 3):
seq(a(n), n=0..27);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n==0, 1, Sum[If[j==k, 0, b[n-j, k] Binomial[n-1, j-1]], {j, 1, n}]];
a[n_] := b[n, 0] - b[n, 3];
a /@ Range[0, 27] (* Jean-François Alcover, May 02 2020, after Maple *)
CROSSREFS
Column k=3 of A327884.
Sequence in context: A180284 A065180 A229245 * A070733 A166175 A094971
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 05 2019
STATUS
approved