login
A328155
Number of set partitions of [n] with distinct block sizes and one of the block sizes is 3.
3
0, 0, 0, 1, 4, 10, 60, 35, 336, 1848, 16080, 33825, 93280, 539396, 3856216, 49390250, 147478800, 708041160, 2354289744, 18196716309, 150847235040, 2615953578700, 9488756856040, 57565330671310, 296745669669768, 1435526275752900, 12231628020365000
OFFSET
0,5
MAPLE
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
`if`(i=k, 0, b(n-i, min(n-i, i-1), k)*binomial(n, i))))
end:
a:= n-> b(n$2, 0)-b(n$2, 3):
seq(a(n), n=0..29);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i - 1], k]*Binomial[n, i]]]];
a[n_] := b[n, n, 0] - b[n, n, 3];
a /@ Range[0, 29] (* Jean-François Alcover, May 04 2020, after Maple *)
CROSSREFS
Column k=3 of A327869.
Cf. A328153.
Sequence in context: A092190 A328036 A222675 * A209030 A220824 A124724
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 05 2019
STATUS
approved