login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328155
Number of set partitions of [n] with distinct block sizes and one of the block sizes is 3.
3
0, 0, 0, 1, 4, 10, 60, 35, 336, 1848, 16080, 33825, 93280, 539396, 3856216, 49390250, 147478800, 708041160, 2354289744, 18196716309, 150847235040, 2615953578700, 9488756856040, 57565330671310, 296745669669768, 1435526275752900, 12231628020365000
OFFSET
0,5
MAPLE
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
`if`(i=k, 0, b(n-i, min(n-i, i-1), k)*binomial(n, i))))
end:
a:= n-> b(n$2, 0)-b(n$2, 3):
seq(a(n), n=0..29);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i - 1], k]*Binomial[n, i]]]];
a[n_] := b[n, n, 0] - b[n, n, 3];
a /@ Range[0, 29] (* Jean-François Alcover, May 04 2020, after Maple *)
CROSSREFS
Column k=3 of A327869.
Cf. A328153.
Sequence in context: A092190 A328036 A222675 * A209030 A220824 A124724
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 05 2019
STATUS
approved