login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327869 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into distinct parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 9
1, 1, 1, 1, 0, 1, 4, 3, 3, 1, 5, 4, 0, 4, 1, 16, 5, 10, 10, 5, 1, 82, 66, 75, 60, 15, 6, 1, 169, 112, 126, 35, 140, 21, 7, 1, 541, 456, 196, 336, 280, 224, 28, 8, 1, 2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1, 17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial.

Number T(n,k) of set partitions of [n] with distinct block sizes and one of the block sizes is k. T(5,3) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

Wikipedia, Multinomial coefficients

Wikipedia, Partition (number theory)

Wikipedia, Partition of a set

EXAMPLE

Triangle T(n,k) begins:

      1;

      1,     1;

      1,     0,     1;

      4,     3,     3,     1;

      5,     4,     0,     4,     1;

     16,     5,    10,    10,     5,    1;

     82,    66,    75,    60,    15,    6,    1;

    169,   112,   126,    35,   140,   21,    7,   1;

    541,   456,   196,   336,   280,  224,   28,   8,  1;

   2272,   765,  1548,  1848,  1386,  630,  336,  36,  9,  1;

  17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1;

  ...

MAPLE

with(combinat):

T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0),

             l=select(x-> nops(x)=nops({x[]}) and

             (k=0 or k in x), partition(n))):

seq(seq(T(n, k), k=0..n), n=0..11);

# second Maple program:

b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,

     `if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+

     `if`(i=k, 0, b(n-i, min(n-i, i-1), k)/i!)))

    end:

T:= (n, k)-> n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):

seq(seq(T(n, k), k=0..n), n=0..11);

CROSSREFS

Columns k=0-3 give: A007837, A327876, A327881, A328155.

Row sums give A327870.

T(2n,n) gives A328156.

Cf. A327801, A327884.

Sequence in context: A129624 A177038 A019975 * A196274 A073871 A120927

Adjacent sequences:  A327866 A327867 A327868 * A327870 A327871 A327872

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)