login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327869
Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into distinct parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
9
1, 1, 1, 1, 0, 1, 4, 3, 3, 1, 5, 4, 0, 4, 1, 16, 5, 10, 10, 5, 1, 82, 66, 75, 60, 15, 6, 1, 169, 112, 126, 35, 140, 21, 7, 1, 541, 456, 196, 336, 280, 224, 28, 8, 1, 2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1, 17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1
OFFSET
0,7
COMMENTS
Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial.
Number T(n,k) of set partitions of [n] with distinct block sizes and one of the block sizes is k. T(5,3) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 0, 1;
4, 3, 3, 1;
5, 4, 0, 4, 1;
16, 5, 10, 10, 5, 1;
82, 66, 75, 60, 15, 6, 1;
169, 112, 126, 35, 140, 21, 7, 1;
541, 456, 196, 336, 280, 224, 28, 8, 1;
2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1;
17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1;
...
MAPLE
with(combinat):
T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0),
l=select(x-> nops(x)=nops({x[]}) and
(k=0 or k in x), partition(n))):
seq(seq(T(n, k), k=0..n), n=0..11);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
`if`(i=k, 0, b(n-i, min(n-i, i-1), k)/i!)))
end:
T:= (n, k)-> n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
seq(seq(T(n, k), k=0..n), n=0..11);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, 1, If[i<2, 0, b[n, i-1, If[i==k, 0, k]]] + If[i==k, 0, b[n-i, Min[n-i, i-1], k]/i!]]];
T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2020, from 2nd Maple program *)
CROSSREFS
Columns k=0-3 give: A007837, A327876, A327881, A328155.
Row sums give A327870.
T(2n,n) gives A328156.
Sequence in context: A129624 A177038 A019975 * A196274 A073871 A120927
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 28 2019
STATUS
approved