OFFSET
0,4
COMMENTS
Sum of multinomials M(n; lambda), where lambda ranges over all integer partitions of n into distinct parts and one part is 2.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..697
Wikipedia, Multinomial coefficients
Wikipedia, Partition (number theory)
Wikipedia, Partition of a set
EXAMPLE
a(2) = 1: 12.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 0.
a(5) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.
MAPLE
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
`if`(i=k, 0, b(n-i, min(n-i, i-1), k)*binomial(n, i))))
end:
a:= n-> b(n$2, 0)-b(n$2, 2):
seq(a(n), n=0..29);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i - 1], k] Binomial[n, i]]]];
a[n_] := b[n, n, 0] - b[n, n, 2];
a /@ Range[0, 29] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2019
STATUS
approved