login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327881
Number of set partitions of [n] with distinct block sizes and one of the block sizes is 2.
2
0, 0, 1, 3, 0, 10, 75, 126, 196, 1548, 15525, 39820, 161106, 358722, 3705884, 46623045, 142988280, 768721504, 3560215293, 12250746432, 144581799790, 2542575063630, 8955836934660, 55657973021431, 319349051391228, 1983548989621200, 7898257536096850
OFFSET
0,4
COMMENTS
Sum of multinomials M(n; lambda), where lambda ranges over all integer partitions of n into distinct parts and one part is 2.
EXAMPLE
a(2) = 1: 12.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 0.
a(5) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.
MAPLE
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
`if`(i=k, 0, b(n-i, min(n-i, i-1), k)*binomial(n, i))))
end:
a:= n-> b(n$2, 0)-b(n$2, 2):
seq(a(n), n=0..29);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i - 1], k] Binomial[n, i]]]];
a[n_] := b[n, n, 0] - b[n, n, 2];
a /@ Range[0, 29] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A327869.
Sequence in context: A090460 A071983 A302693 * A215514 A215347 A186247
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2019
STATUS
approved