login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327878
Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromes using exactly k different symbols, 1 <= k <= 1 + floor(n/2).
8
1, 0, 1, 0, 2, 0, 3, 3, 0, 6, 6, 0, 7, 21, 12, 0, 14, 36, 24, 0, 18, 90, 132, 60, 0, 28, 150, 240, 120, 0, 39, 339, 900, 960, 360, 0, 62, 540, 1560, 1800, 720, 0, 81, 1149, 4968, 9300, 7920, 2520, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 175, 3765, 24588, 71400, 103320, 73080, 20160
OFFSET
1,5
COMMENTS
Primitive periodic palindromes may also be called achiral Lyndon words.
LINKS
FORMULA
T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A284856(n,j).
Column k is the Moebius transform of column k of A305540.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2;
0, 3, 3;
0, 6, 6;
0, 7, 21, 12;
0, 14, 36, 24;
0, 18, 90, 132, 60;
0, 28, 150, 240, 120;
0, 39, 339, 900, 960, 360;
0, 62, 540, 1560, 1800, 720;
0, 81, 1149, 4968, 9300, 7920, 2520;
0, 126, 1806, 8400, 16800, 15120, 5040;
0, 175, 3765, 24588, 71400, 103320, 73080, 20160;
...
PROG
(PARI) T(n, k) = {sumdiv(n, d, moebius(n/d) * k! * (stirling((d+1)\2, k, 2) + stirling(d\2+1, k, 2)))/2}
CROSSREFS
Columns k=2..6 are A056498, A056499, A056500, A056501, A056502.
Row sums are A327879.
Sequence in context: A209693 A154344 A134409 * A337841 A298605 A180013
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Sep 28 2019
STATUS
approved