OFFSET
1,5
COMMENTS
The number of achiral necklaces is equivalent to the number of achiral bracelets.
FORMULA
T(n,k) = (k!/2) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), where S2(n,k) is the Stirling subset number A008277.
G.f. for column k>1: (k!/2) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2). - Robert A. Russell, Sep 26 2018
EXAMPLE
The triangle begins with T(1,1):
1;
1, 1;
1, 2;
1, 4, 3;
1, 6, 6;
1, 10, 21, 12;
1, 14, 36, 24;
1, 22, 93, 132, 60;
1, 30, 150, 240, 120;
1, 46, 345, 900, 960, 360;
1, 62, 540, 1560, 1800, 720;
1, 94, 1173, 4980, 9300, 7920, 2520;
1, 126, 1806, 8400, 16800, 15120, 5040;
1, 190, 3801, 24612, 71400, 103320, 73080, 20160;
1, 254, 5796, 40824, 126000, 191520, 141120, 40320;
1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440;
1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880;
For a(4,2)=4, the achiral loops are AAAB, AABB, ABAB, and ABBB.
MATHEMATICA
Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 15}, {k, 1, Ceiling[(n + 1)/2]}] // Flatten
PROG
(PARI) T(n, k) = (k!/2)*(stirling(floor((n+1)/2), k, 2)+stirling(ceil((n+1)/2), k, 2));
tabf(nn) = for(n=1, nn, for (k=1, ceil((n+1)/2), print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 02 2018
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
approved