OFFSET
1,5
COMMENTS
Equivalently, T(n,k) is the number of sequences (words) of length n on an alphabet of k letters where each letter of the alphabet occurs at least once in the sequence. Two sequences are considered equivalent if one can be obtained from the other by a cyclic shift of the letters. Cf. A054631 where the surjective restriction is removed. - Geoffrey Critzer, Jun 18 2013
Robert A. Russell's g.f. for column k >= 1 (in the Formula section below) can be proved by integrating both sides of the formula Sum_{n>=1} S2(n, k)*x^(n-1) = x^(k-1)/((1 - x)* (1 - 2*x) * (1 - 3*x) * ... * (1 - k*x)) w.r.t. x. A variation of this identity (valid for |x| < 1/k) can be found in the Formula section of A008277. - Petros Hadjicostas, Aug 20 2019
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n,k) = (k!/n) * Sum_{d|n} phi(d) * S2(n/d, k), where S2(n,k) = Stirling numbers of 2nd kind A008277.
G.f. for column k: -Sum_{d>0} (phi(d)/d) * Sum_{j = 1..k} (-1)^(k-j) * C(k,j) * log(1 - j * x^d). - Robert A. Russell, Sep 26 2018
T(n,k) = Sum_{d|n} A254040(d, k) for n, k >= 1. - Petros Hadjicostas, Aug 19 2019
EXAMPLE
The triangle begins with T(1,1):
1;
1, 1;
1, 2, 2;
1, 4, 9, 6;
1, 6, 30, 48, 24;
1, 12, 91, 260, 300, 120;
1, 18, 258, 1200, 2400, 2160, 720;
1, 34, 729, 5106, 15750, 23940, 17640, 5040;
1, 58, 2018, 20720, 92680, 211680, 258720, 161280, 40320;
1, 106, 5613, 81876, 510312, 1643544, 2963520, 3024000, 1632960, 362880;
...
For T(4,2) = 4, the necklaces are AAAB, AABB, ABAB, and ABBB.
For T(4,4) = 6, the necklaces are ABCD, ABDC, ACBD, ACDB, ADBC, and ADCB.
MAPLE
with(numtheory):
T:= (n, k)-> (k!/n) *add(phi(d) *Stirling2(n/d, k), d=divisors(n)):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jun 19 2013
MATHEMATICA
Table[Table[Sum[EulerPhi[d]*StirlingS2[n/d, k]k!, {d, Divisors[n]}]/n, {k, 1, n}], {n, 1, 10}]//Grid (* Geoffrey Critzer, Jun 18 2013 *)
PROG
(PARI) T(n, k) = (k!/n) * sumdiv(n, d, eulerphi(d) * stirling(n/d, k, 2)); \\ Joerg Arndt, Sep 25 2020
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Formula section edited by Petros Hadjicostas, Aug 20 2019
STATUS
approved