login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056283
Number of n-bead necklaces with exactly three different colored beads.
7
0, 0, 2, 9, 30, 91, 258, 729, 2018, 5613, 15546, 43315, 120750, 338259, 950062, 2678499, 7573350, 21480739, 61088874, 174184755, 497812638, 1425847623, 4092087522, 11765822365, 33887517870, 97756387365, 282414624746, 816999710223, 2366509198350, 6862930841141
OFFSET
1,3
COMMENTS
Turning over the necklace is not allowed.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
a(n) = A001867(n) - 3*A000031(n) + 3.
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=3 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=3 is the number of colors. (End)
EXAMPLE
For n=3, the two necklaces are ABC and ACB.
MATHEMATICA
k=3; Table[k!DivisorSum[n, EulerPhi[#]StirlingS2[n/#, k]&]/n, {n, 1, 30}] (* Robert A. Russell, Sep 26 2018 *)
CROSSREFS
Column k=3 of A087854.
Sequence in context: A056288 A261174 A273652 * A192518 A277241 A201164
KEYWORD
nonn
STATUS
approved