login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056283 Number of n-bead necklaces with exactly three different colored beads. 7
0, 0, 2, 9, 30, 91, 258, 729, 2018, 5613, 15546, 43315, 120750, 338259, 950062, 2678499, 7573350, 21480739, 61088874, 174184755, 497812638, 1425847623, 4092087522, 11765822365, 33887517870, 97756387365, 282414624746, 816999710223, 2366509198350, 6862930841141 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Turning over the necklace is not allowed.

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A001867(n) - 3*A000031(n) + 3.

From Robert A. Russell, Sep 26 2018: (Start)

a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=3 is the number of colors and S2 is the Stirling subset number A008277.

G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=3 is the number of colors. (End)

EXAMPLE

For n=3, the two necklaces are ABC and ACB.

MATHEMATICA

k=3; Table[k!DivisorSum[n, EulerPhi[#]StirlingS2[n/#, k]&]/n, {n, 1, 30}] (* Robert A. Russell, Sep 26 2018 *)

CROSSREFS

Cf. A000031, A001867, A052823.

Column k=3 of A087854.

Sequence in context: A056288 A261174 A273652 * A192518 A277241 A201164

Adjacent sequences:  A056280 A056281 A056282 * A056284 A056285 A056286

KEYWORD

nonn

AUTHOR

Marks R. Nester

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 15:30 EST 2018. Contains 318049 sequences. (Running on oeis4.)