The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074143 a(1) = 1; a(n) = n * Sum_{k=1..n-1} a(k). 13
 1, 2, 9, 48, 300, 2160, 17640, 161280, 1632960, 18144000, 219542400, 2874009600, 40475635200, 610248038400, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 24329020081766400000, 536454892802949120000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is also the number of elements of the alternating semigroup (A^c_n) for F(n, p) if p = n - 1 (cf. A001710). - Bakare Gatta Naimat, Jan 15 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Stephen Lipscomb, Symmetric inverse semigroups, Mathematical surveys and monographs, Vol.46 Amer. Math. Soc. (1996). Michael Penn, Australian Mathematical Olympiad 2018 Question 5, Youtube video, 2020. FORMULA a(n) = n^2*a(n-1)/(n-1) for n > 2. a(n) = n*ceiling[n!/2] = n*A001710(n-1) = A001710(n+1)-A001710(n) = ceiling[A001563(n)/2] - Henry Bottomley, Nov 27 2002 a(n) = ((n+1)!-n!)/2 for n > 1. - Vladimir Joseph Stephan Orlovsky, Apr 03 2011 G.f.: (U(0) + x)/(2*x) where U(k)= 1 - 1/(k+1 - x*(k+1)^2*(k+2)/(x*(k+1)*(k+2) - 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012 G.f.: 1/2 + Q(0), where Q(k)= 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013 a(n) = sum(j = 0..n, (-1)^(n-j)*binomial(n, j)*(j)^(n+1))/(n+1), n > 1, a(1) = 1. - Vladimir Kruchinin, Jun 01 2013 a(n) = numerator(n!/2*n). - Vincenzo Librandi, Apr 15 2014 a(n) is F(n;p) = n^2(n-1)!/2 if p = n-1 in A^c_n. For instance for n=4 and p=n-1: F(4; 4-1)= 4^2(4-1)!/2 = 16*6/2 = 48. - Bakare Gatta Naimat, Nov 18 2015 MAPLE seq(sum(mul(j, j=3..n), k=1..n), n=1..19); # Zerinvary Lajos, Jun 01 2007 a := n -> `if`(n=1, 1, n!*n/2): seq(a(n), n=1..19); # Peter Luschny, Jan 22 2016 MATHEMATICA A074143[1] = 1; A074143[n_] := A074143[n] = n * Sum[a[k], {k, n - 1}]; Array[A074143, 20] (* T. D. Noe, Apr 05 2011 *) Table[Numerator[n!/2 n], {n, 40}] (* Vincenzo Librandi, Apr 15 2014) PROG (Magma) [Numerator(Factorial(n)/2*n): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014 (SageMath) def b(n): return 1/2 if (n==1) else n^2*b(n-1)/(n-1) def A074143(n): return b(n) + int(n==1)/2 [A074143(n) for n in range(1, 41)] # G. C. Greubel, Nov 29 2022 CROSSREFS A diagonal of A254040. Cf. A001563, A001710. Sequence in context: A171803 A100427 A214404 * A198892 A357790 A205571 Adjacent sequences: A074140 A074141 A074142 * A074144 A074145 A074146 KEYWORD nonn AUTHOR Amarnath Murthy, Aug 28 2002 EXTENSIONS More terms from Henry Bottomley, Nov 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 08:01 EDT 2023. Contains 361579 sequences. (Running on oeis4.)