login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214404
G.f. satisfies: A( x - A(x)^2 ) = x+x^2 - A(x)^2.
1
1, 1, 2, 9, 48, 296, 2008, 14648, 113200, 917588, 7746876, 67770456, 611916624, 5685473544, 54227943240, 529937718704, 5297716934498, 54106608947506, 563945862248108, 5993092373220992, 64885877599868336, 715222369910418672, 8021722347464144744
OFFSET
1,3
FORMULA
G.f. satisfies: A(x) = x + G(x)^2 where G(x - A(x)^2) = x.
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 9*x^4 + 48*x^5 + 296*x^6 + 2008*x^7 +...
Related expansions:
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 22*x^5 + 118*x^6 + 724*x^7 + 4881*x^8 +...
A(x-A(x)^2) = x - 2*x^3 - 5*x^4 - 22*x^5 - 118*x^6 - 724*x^7 -...
x+x^2 - A(x)^2 = x - 2*x^3 - 5*x^4 - 22*x^5 - 118*x^6 - 724*x^7 -...
Let G(x) equal the series reversion of x - A(x)^2:
G(x) = x + x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 804*x^6 + 5840*x^7 +...
then
G(x)^2 = x^2 + 2*x^3 + 9*x^4 + 48*x^5 + 296*x^6 + 2008*x^7 + 14648*x^8 +...
A(G(x)) = x + 2*x^2 + 8*x^3 + 44*x^4 + 282*x^5 + 2004*x^6 + 15340*x^7 +...
A(G(x))^2 = x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 804*x^6 + 5840*x^7 +...
where A(x) = x + G(x)^2 = G(x) + G(x)^2 - A(G(x))^2.
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+serreverse(x-A^2+x*O(x^n))^2); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A216171.
Sequence in context: A171803 A368961 A100427 * A074143 A198892 A357790
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2012
STATUS
approved