login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A214403
Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
OFFSET
0,8
COMMENTS
Right border and row sums form A178325.
LINKS
EXAMPLE
Triangle begins:
[1];
[1, 1];
[1,1,1, 1, 2];
[1,1,1,1,1, 1,2,3, 4, 6];
[1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21];
[1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83];
...
Row sums equal the row sums (A178325) of triangle A214398,
where A214398(n, k) = binomial(k^2+n-k-1, n-k):
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
...
PROG
(PARI) {T(n, k)=if(k>n^2||n<0||k<0, 0, if(n==0, 1, if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))}
for(n=0, 10, for(k=0, n^2, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf,changed
AUTHOR
Paul D. Hanna, Jul 15 2012
STATUS
approved