login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214403
Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
OFFSET
0,8
COMMENTS
Right border and row sums form A178325.
LINKS
EXAMPLE
Triangle begins:
[1];
[1, 1];
[1,1,1, 1, 2];
[1,1,1,1,1, 1,2,3, 4, 6];
[1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21];
[1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83];
[1,1,1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7,8,9, 10,12,15,19,24,30,37, 45,55,68,85,107, 135,171,218, 280, 363];
[1,1,1,1,1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7,8,9,10,11, 12,14,17,21,26,32,39,47,56, 66,78,93,112,136,166,203, 248,303,371,456,563, 698,869,1087, 1367, 1730]; ...
Row sums equal the row sums (A178325) of triangle A214398,
where A214398(n, k) = binomial(k^2+n-k-1, n-k):
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1; ...
PROG
(PARI) {T(n, k)=if(k>n^2|n<0|k<0, 0, if(n==0, 1, if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))}
for(n=0, 10, for(k=0, n^2, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Jul 15 2012
STATUS
approved