login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214405
Numbers of the form (4k+3)^2-8 or (4k+5)^2+4.
9
1, 29, 41, 85, 113, 173, 217, 293, 353, 445, 521, 629, 721, 845, 953, 1093, 1217, 1373, 1513, 1685, 1841, 2029, 2201, 2405, 2593, 2813, 3017, 3253, 3473, 3725, 3961, 4229, 4481, 4765, 5033, 5333, 5617, 5933, 6233, 6565, 6881, 7229, 7561, 7925, 8273, 8653
OFFSET
1,2
COMMENTS
For every odd n the triple (a(n-1)^2, a(n)^2 , a(n+1)^2) is an arithmetic progression, i.e., 2*a(n)^2 = a(n-1)^2 + a(n+1)^2.
In general a triple((x-y)^2,z^2,(x+y)^2) is an arithmetic progression if and only if x^2+y^2=z^2.
The first differences of this sequence is the interleaved sequence 28,12,44,28,60,44....
FORMULA
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
O.G.f.: (1+27*x-17*x^2+5*x^3)/((1+x)*(1-x)^3).
a(n) = 4*n*(n+3)-6*(-1)^n+7.
2*a(2n+1)^2 = a(2n)^2 + a(2n+2)^2.
EXAMPLE
a(4) = 2*a(3) - 2*a(1) + a(0) = 2*85 - 2*29 + 1 = 113.
PROG
(Magma) I:=[1, 29, 41, 85]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];
(Maxima) A214405(n):=4*n*(n+3)-6*(-1)^n+7$
makelist(A214405(n), n, 0, 30); /* Martin Ettl, Nov 01 2012 */
CROSSREFS
Sequence in context: A137226 A057539 A157257 * A104072 A357175 A070268
KEYWORD
nonn,easy
AUTHOR
STATUS
approved