login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214405 Numbers of the form (4k+3)^2-8 or (4k+5)^2+4. 9
1, 29, 41, 85, 113, 173, 217, 293, 353, 445, 521, 629, 721, 845, 953, 1093, 1217, 1373, 1513, 1685, 1841, 2029, 2201, 2405, 2593, 2813, 3017, 3253, 3473, 3725, 3961, 4229, 4481, 4765, 5033, 5333, 5617, 5933, 6233, 6565, 6881, 7229, 7561, 7925, 8273, 8653 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For every odd n the triple (a(n-1)^2, a(n)^2 , a(n+1)^2) is an arithmetic progression, i.e., 2*a(n)^2 = a(n-1)^2 + a(n+1)^2.

In general a triple((x-y)^2,z^2,(x+y)^2) is an arithmetic progression if and only if x^2+y^2=z^2.

The first differences of this sequence is the interleaved sequence 28,12,44,28,60,44....

LINKS

Table of n, a(n) for n=1..46.

FORMULA

a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).

O.G.f.: (1+27*x-17*x^2+5*x^3)/((1+x)*(1-x)^3).

a(n) = 4*n*(n+3)-6*(-1)^n+7.

2*a(2n+1)^2 = a(2n)^2 + a(2n+2)^2.

EXAMPLE

a(4) = 2*a(3) - 2*a(1) + a(0) = 2*85 - 2*29 + 1 = 113.

PROG

(MAGMA) I:=[1, 29, 41, 85]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];

(Maxima) A214405(n):=4*n*(n+3)-6*(-1)^n+7$

makelist(A214405(n), n, 0, 30); /* Martin Ettl, Nov 01 2012 */

CROSSREFS

Cf. A178218, A214345.

Sequence in context: A137226 A057539 A157257 * A104072 A070268 A139870

Adjacent sequences:  A214402 A214403 A214404 * A214406 A214407 A214408

KEYWORD

nonn,easy

AUTHOR

Yasir Karamelghani Gasmallah, Jul 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 04:54 EDT 2020. Contains 334711 sequences. (Running on oeis4.)