login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057539
Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.
4
1, 29, 41, 71, 139, 169, 181, 209, 211, 239, 251, 281, 349, 379, 391, 419, 421, 449, 461, 491, 559, 589, 601, 629, 631, 659, 671, 701, 769, 799, 811, 839, 841, 869, 881, 911, 979, 1009, 1021, 1049, 1051, 1079, 1091, 1121, 1189, 1219, 1231, 1259, 1261, 1289
OFFSET
1,2
COMMENTS
Integers of the form sqrt(840*k+1) for k >= 0. - Boyd Blundell, Jul 10 2021
LINKS
A. Feist, On the Density of Birthday Sets, The Pentagon, 60 (No. 1, Fall 2000), 31-35.
FORMULA
G.f.: x*(1 + 28*x + 12*x^2 + 30*x^3 + 68*x^4 + 30*x^5 + 12*x^6 + 28*x^7 + x^8) / ((1+x)*(x^2+1)*(x^4+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-8) + 210 = a(n-1) + a(n-8) - a(n-9). - Charles R Greathouse IV, Oct 20 2014
a(n) = 105n/4 + O(1). - Charles R Greathouse IV, Oct 20 2014
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 29, 41, 71, 139, 169, 181, 209, 211}, 50] (* Harvey P. Dale, Sep 24 2014 *)
PROG
(PARI) is_A057539(n, m=[2, 3, 4, 5, 6, 7])=!for(i=1, #m, abs((n+1)%m[i]-1)==1||return)
(PARI) is(n)=for(i=4, 7, if(abs(centerlift(Mod(n, i)))!=1, return(0))); 1 \\ Charles R Greathouse IV, Oct 20 2014
(Python)
def ok(n): return all(n%d in [1, d-1] for d in range(2, 8))
def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
print(aupto(1300)) # Michael S. Branicky, Jan 29 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000
EXTENSIONS
Offset corrected to 1 by Ray Chandler, Jul 29 2019
STATUS
approved