login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346145
Primes of the form k^2 + 25.
0
29, 41, 61, 89, 281, 349, 509, 601, 701, 809, 1049, 1181, 1321, 1789, 2141, 2729, 3389, 4649, 5209, 5501, 5801, 8861, 9241, 9629, 10429, 11261, 11689, 12569, 15401, 15901, 17449, 17981, 18521, 19069, 21341, 21929, 23741, 24989, 26921, 27581, 33149, 39229, 40829, 41641, 42461, 45821, 46681, 52009
OFFSET
1,1
COMMENTS
k^2 + 25 = (k+5i)*(k-5i), where i is the imaginary unit.
FORMULA
a(n) >> n log^2 n (Brun sieve). - Charles R Greathouse IV, Jul 06 2021
MATHEMATICA
Select[Range[230]^2 + 25, PrimeQ] (* Amiram Eldar, Jul 06 2021 *)
PROG
(PARI) list(lim)=my(v=List(), p); forstep(k=2, sqrtint(lim\1-25), 2, if(isprime(p = k^2+25), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Jul 06 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Todor Szimeonov, Jul 06 2021
STATUS
approved